Ultra-miniature dual-wavelength spatial frequency domain imaging for micro-endoscopy

JOURNAL OF BIOMEDICAL OPTICS(2024)

引用 0|浏览1
暂无评分
摘要
Significance: There is a need for a cost-effective, quantitative imaging tool that can be deployed endoscopically to better detect early stage gastrointestinal cancers. Spatial frequency domain imaging (SFDI) is a low-cost imaging technique that produces near-real time, quantitative maps of absorption and reduced scattering coefficients, but most implementations are bulky and suitable only for use outside the body. Aim: We aim to develop an ultra-miniature SFDI system comprising an optical fiber array (diameter 0.125 mm) and a micro camera (1x1 mm package) to displace conventionally bulky components, in particular, the projector. Approach: First, we fabricated a prototype with an outer diameter of 3 mm, although the individual component dimensions could permit future packaging to a <1.5 mm diameter. We developed a phase-tracking algorithm to rapidly extract images with fringe projections at three equispaced phase shifts to perform SFDI demodulation. Results: To validate the performance, we first demonstrate comparable recovery of quantitative optical properties between our ultra-miniature system and a conventional bench-top SFDI system with an agreement of 15% and 6% for absorption and reduced scattering, respectively. Next, we demonstrate imaging of absorption and reduced scattering of tissue-mimicking phantoms providing enhanced contrast between simulated tissue types (healthy and tumour), done simultaneously at wavelengths of 515 and 660 nm. Using a support vector machine classifier, we estimate that sensitivity and specificity values of >90% are feasible for detecting simulated squamous cell carcinoma. Conclusions: This device shows promise as a cost-effective, quantitative imaging tool to detect variations in optical absorption and scattering as indicators of cancer. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
更多
查看译文
关键词
spatial frequency domain imaging,miniaturization,optical properties,optical fibers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要