A Silicon Nitride Microring Modulator for High-Performance Photonic Integrated Circuits

Venkata Sai Praneeth Karempudi,Ishan G Thakkar,Jeffrey Todd Hastings

CoRR(2023)

引用 0|浏览2
暂无评分
摘要
The use of the Silicon-on-Insulator (SOI) platform has been prominent for realizing CMOS-compatible, high-performance photonic integrated circuits (PICs). But in recent years, the silicon-nitride-on-silicon-dioxide (SiN-on-SiO$_2$) platform has garnered increasing interest as an alternative, because of its several beneficial properties over the SOI platform, such as low optical losses, high thermo-optic stability, broader wavelength transparency range, and high tolerance to fabrication-process variations. However, SiN-on-SiO$_2$ based active devices, such as modulators, are scarce and lack in desired performance due to the absence of free-carrier-based activity in the SiN material and the complexity of integrating other active materials with SiN-on-SiO$_2$ platform. This shortcoming hinders the SiN-on-SiO$_2$ platform for realizing active PICs. To address this shortcoming, in this article, we demonstrate a SiN-on-SiO$_2$ microring resonator (MRR) based active modulator. Our designed MRR modulator employs an Indium-Tin-Oxide (ITO)-SiO$_2$-ITO thin-film stack as the active upper cladding and leverages the free-carrier assisted, high-amplitude refractive index change in the ITO films to affect a large electro-refractive optical modulation in the device. Based on the electrostatic, transient, and finite difference time domain (FDTD) simulations, conducted using photonics foundry-validated tools, we show that our modulator achieves 450 pm/V resonance modulation efficiency, $\sim$46.2 GHz 3-dB modulation bandwidth, 18 nm free-spectral range (FSR), 0.24 dB insertion loss, and 8.2 dB extinction ratio for optical on-off-keying (OOK) modulation at 30 Gb/s.
更多
查看译文
关键词
silicon nitride microring modulator,integrated circuits,high-performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要