Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces

Nature Nanotechnology(2023)

引用 3|浏览20
暂无评分
摘要
The Berry curvature dipole (BCD) is a key parameter that describes the geometric nature of energy bands in solids. It defines the dipole-like distribution of Berry curvature in the band structure and plays a key role in emergent nonlinear phenomena. The theoretical rationale is that the BCD can be generated at certain symmetry-mismatched van der Waals heterointerfaces even though each material has no BCD in its band structure. However, experimental confirmation of such a BCD induced via breaking of the interfacial symmetry remains elusive. Here we demonstrate a universal strategy for BCD generation and observe BCD-induced gate-tunable spin-polarized photocurrent at WSe 2 /SiP interfaces. Although the rotational symmetry of each material prohibits the generation of spin photocurrent under normal incidence of light, we surprisingly observe a direction-selective spin photocurrent at the WSe 2 /SiP heterointerface with a twist angle of 0°, whose amplitude is electrically tunable with the BCD magnitude. Our results highlight a BCD–spin–valley correlation and provide a universal approach for engineering the geometric features of twisted heterointerfaces.
更多
查看译文
关键词
Electronic properties and materials,Nonlinear optics,Spintronics,Two-dimensional materials,Materials Science,general,Nanotechnology,Nanotechnology and Microengineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要