Chrome Extension
WeChat Mini Program
Use on ChatGLM

Purinergic P2X7 Receptor As a Potential Targeted Therapy for COVID-19-associated Lung Cancer Progression

Journal of Cellular Signaling(2023)

Cited 1|Views12
No score
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection is a serious threat to lung cancer patients. Hereby, we hypothesize that Coronavirus disease 2019 (COVID-19) may contribute to lung cancer progression by increasing extracellular adenosine triphosphate (ATP) levels and hyperactivating the purinergic P2X purinoceptor 7 receptor (P2X7R). Hyperactivation of P2X7R by increased extracellular ATP may stimulate multiple signaling pathways and factors such as NLRP3 inflammasome; as a result, interleukin (IL)-1β, and IL-18 pro-inflammatory cytokines are released, JNK, Rho kinase, HMGB1-RAGE, PI3K/AKT, hypoxia-inducible factor-1 alpha (HIF-1α), and ERK. NLRP3 activation may play a pivotal role in fatal cytokine storm in critically ill patients with COVID-19 and tumor progression in patients with lung cancer. Consequently, inhibiting these signaling pathways may deviate immune responses toward anti-tumoral responses, and suppress lung cancer progression and cytokine storms. Therefore, targeting P2X7R by means of oxidized ATP and anti-P2X7 monoclonal antibodies may provide promising therapeutic approaches to prevent lung cancer progression in COVID-19 patients; however, no clinical trials have yet been conducted, and their clinical efficacy remains to be elucidated.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined