Learning an Optimised Stable Taylor-Galerkin Convection Scheme Based on a Local Spectral Model for the Numerical Error Dynamics
JOURNAL OF COMPUTATIONAL PHYSICS(2023)
Abstract
We present a new spectral framework to design and optimise numerical methods for convection problems termed Local Transfer function Analysis (LTA), which improves the state-of-art model for error dynamics due to numerical discretisation. LTA converts the numerical discretisation into a network of transfer function blocks in the spectral space, where optimisation of the solution error becomes an impedance matching problem. In addition, a machine learning model based on the graph neural network is employed to learn the optimal coefficients of the transfer function leading to the matched impedance by examining both the local physical field and the local mesh topology. We demonstrate applications of this technique to design Taylor-Galerkin finite element numerical schemes for solving linear convection on irregular meshes in 1D. Using the LTA, we identify and constrain the neural network predictions to the numerically stable design space, thus improving the stability and generalisation of the optimal parameters that lead to a matched impedance.
MoreTranslated text
Key words
Taylor-Galerkin scheme,Machine learning,Numerical analysis,Finite-element method
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
PHYSICS OF FLUIDS 2024
被引用0
Improved Approximate Dispersion Relation Analysis Using Deep Neural Network
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY 2024
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper