Early striatal hyperexcitability in anin vitrohuman striatal microcircuit model carrying the Parkinson’sGBA-N370Smutation

crossref(2023)

引用 0|浏览1
暂无评分
摘要
AbstractUnderstanding medium spiny neuron (MSN) physiology is essential to understand motor impairments in Parkinson’s disease (PD) given the architecture of the basal ganglia. Here, we developed a custom three-chamber microfluidic platform and established a cortico-striato-nigral microcircuit recapitulating the striatal presynaptic triadin vitrousing induced pluripotent stem cell (iPSC)-derived neurons. We found that, although cortical glutamatergic projections facilitated MSN synaptic activity, dopaminergic transmission was essential for excitability maturation of MSNsin vitro. Replacement of wild-type iPSC-dopamine neurons (iPSC-DaNs) in the striatal microcircuit with those carrying the PD-relatedGBA-N370Smutation induced early hyperexcitability in iPSC-MSNs through reduction of voltage-gated sodium and potassium intrinsic currents. Such deficits were resolved in aged cultures or with antagonism of protein kinase A activity in nigrostriatal iPSC-DaNs. Hence, our results highlight the unique utility of modelling striatal neurons in a modular and highly physiological circuit which is essential to reveal mechanistic insights of the loss of electrical functional integrity in the striata ofGBA1PD patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要