Knowledge about future global and regional warming is essential for effective adaptation plann">

Observations-based machine learning model constrains uncertainty in future regional warming projections.

Sophie Wilkinson,Peer Nowack,Manoj Joshi

crossref(2023)

引用 0|浏览0
暂无评分
摘要
<div> <div> <p><span data-contrast="none">Knowledge about future global and regional warming is essential for effective adaptation planning and our current temperature projections are based on the output of global climate models (GCMs). Although GCMs agree on the direction of change, there are still significant discrepancies in the magnitude of the projected response</span><sup><span data-contrast="none">1</span></sup><span data-contrast="none">.</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335551550&quot;:6,&quot;335551620&quot;:6,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> <div> <p><span data-contrast="none">Here we develop a novel method</span><sup><span data-contrast="none">2,3</span></sup><span data-contrast="none"> for constraining uncertainty in future regional temperature projections based on the predictions of an observationally trained machine learning algorithm, Ridge-ERA5. Ridge-ERA5 - a Ridge regression model</span><span data-contrast="none"><sup>4</sup> </span><span data-contrast="none">-</span> <span data-contrast="none">learns coefficients to represent observed relationships between daily temperature anomalies and a selection of thermodynamic and dynamical variables in the </span><span data-contrast="none">ECMWF Re-Analysis</span><span data-contrast="none"> (ERA) 5 dataset</span><sup><span data-contrast="none">5</span></sup><span data-contrast="none">. Climate-invariance of the Ridge relationships is demonstrated in a perfect model framework: we train a set of 23 Ridge-CMIP models on historical data of the Coupled Model Intercomparison Project (CMIP) phase 6</span><sup><span data-contrast="none">6</span></sup><span data-contrast="none"> and evaluate their predictions using future scenario data from the most extreme future emissions pathway, SSP 5-8.5.&#160;</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335551550&quot;:6,&quot;335551620&quot;:6,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> <div> <p><span data-contrast="none">Combining the historically constrained Ridge-ERA5 coefficients with normalised inputs from CMIP6 future climate change simulations forms the basis of a new methodology to derive observational constraints on regional climate change. For daily, regional (2&#176;x2&#176;), summer temperatures across the Northern Hemisphere, the Ridge-ERA5 observations-based constraint implies, for example, that a group of higher sensitivity CMIP6 models is inconsistent with observational evidence (including in Eastern, West & Central, and Northern Europe) potentially suggesting that the sensitivity of these models is indeed too high</span><sup><span data-contrast="none">7,8</span></sup><span data-contrast="none">. A key advantage of our new method is the ability to constrain regional projections at very high &#8211; daily &#8211; temporal resolution which includes extreme events such as heatwaves.</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335551550&quot;:6,&quot;335551620&quot;:6,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> <div> <p><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335551550&quot;:6,&quot;335551620&quot;:6,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> <div> <div> <p><span data-contrast="none">1) Brient, F. (2019) Reducing Uncertainties in Climate Projections with Emergent Constraints: Concepts, Examples and Prospects. </span><em><span data-contrast="none">Advances in Atmospheric Sciences 2020 37:1</span></em><span data-contrast="none">, 37(1), pp. 1&#8211;15.&#160;</span></p> <p><span data-contrast="none">2) Ceppi, P. and Nowack, P. (2021) Observational evidence that cloud feedback amplifies global warming. </span><em><span data-contrast="none">PNAS, </span></em><span data-contrast="none">118(30).</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> <div> <p><span data-contrast="none">3) Nowack, P. </span><em><span data-contrast="none">et al.</span></em><span data-contrast="none"> An observational constraint on the uncertainty in stratospheric water vapour projections. (in review)</span><span data-ccp-props="{&quot;134233117&quot;:false,&quot;134233118&quot;:false,&quot;201341983&quot;:0,&quot;335551550&quot;:1,&quot;335551620&quot;:1,&quot;335559685&quot;:720,&quot;335559737&quot;:0,&quot;335559738&quot;:0,&quot;335559739&quot;:160,&quot;335559740&quot;:259,&quot;335559991&quot;:360}">&#160;</span></p> </div> <div> <p><span data-contrast="none">4) Hoerl, A. E. and Kennard, R. W. (1970) Ridge Regression: Applications to Nonorthogonal Problems. </span><em><span data-contrast="none">Technometrics</span></em><span data-contrast="none">, 12(1), pp. 69&#8211;82.&#160;</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> <div> <p><span data-contrast="none">5) Hersbach, H. </span><em><span data-contrast="none">et al.</span></em><span data-contrast="none"> (2020) The ERA5 global reanalysis. </span><em><span data-contrast="none">Quarterly Journal of the Royal Meteorological Society</span></em><span data-contrast="none">, 146(730), pp. 1999&#8211;2049.&#160;</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> </div> <div> <div> <p><span data-contrast="none">6) Eyring, V. </span><em><span data-contrast="none">et al.</span></em><span data-contrast="none"> (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. </span><em><span data-contrast="none">Geoscientific Model Development</span></em><span data-contrast="none">, 9(5), pp. 1937&#8211;1958.&#160;</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> <div> <p><span data-contrast="none">7) Zelinka, M. D. </span><em><span data-contrast="none">et al.</span></em><span data-contrast="none"> (2020) Causes of Higher Climate Sensitivity in CMIP6 Models. </span><em><span data-contrast="none">Geophysical Research Letters</span></em><span data-contrast="none">, 47(1).</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> <div> <p><span data-contrast="none">8) Zhu, J., Poulsen, C. J. and Otto-Bliesner, B. L. (2020) High climate sensitivity in CMIP6 model not supported by paleoclimate. </span><em><span data-contrast="none">Nature Climate Change 2020 10:5</span></em><span data-contrast="none">, 10(5), pp. 378&#8211;379.</span><span data-ccp-props="{&quot;201341983&quot;:0,&quot;335559739&quot;:160,&quot;335559740&quot;:259}">&#160;</span></p> </div> </div> </div>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要