Dynamic neutron and X-ray three-dimensional imaging of fluid flow and mixing during mineral precipitation in porous rocks 

crossref(2023)

引用 0|浏览0
暂无评分
摘要
<p>Flow and mixing processes in porous media control many natural and industrial systems, such as microbial clogging, oil extraction, and effluent disposal. In many systems, the porosity may evolve during mineral precipitation, such as in rocks, and control fluid mixing and fluid transport properties. Here, we use three-dimensional in situ dynamic neutron and X-ray micro-tomography imaging to explore fluid transport into Berea sandstone core samples during in-situ carbonate precipitation. Neutron imaging can track fluid flow inside the rock, whereas X-ray imaging illuminates the regions where mineral precipitation occurs. We control the precipitation of calcium carbonate in the rock through reactive-mixing between solutions containing CaCl<sub>2</sub> and Na<sub>2</sub>CO<sub>3</sub>. By solving the advection-diffusion equation using the contrast in neutron attenuation from time-lapse images, we derive the 3D velocity field of the injected fluids and characterize the evolution of the permeability field into the rock during mineral precipitation. We also investigate the mixing between heavy water and a cadmium solution under the influence of mineral precipitation. Results show that, under the effect of mineral precipitation, a wide range of local flow velocities develop in the sample, under the same fluid injection rate, and we quantify the distribution of flow velocities in the sample. Moreover, we observe more efficient mixing between heavy water and a cadmium solution after mineral precipitation. The finding of this experimental study is useful in progressing the knowledge in the domain of reactive solute and contaminant transport in the subsurface.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要