谷歌浏览器插件
订阅小程序
在清言上使用

Modeling Kilonova Emission from Neutron Star Mergers

Proceedings of the International Astronomical Union(2020)

引用 0|浏览8
暂无评分
摘要
AbstractCoalescence of binary neutron stars gives rise to kilonova, thermal emission powered by radioactive decays of newly synthesized r-process nuclei. Observational properties of kilonova are largely affected by bound-bound opacities of r-process elements. It is, thus, important to understand atomic properties of heavy elements to link the observed signals with nucleosynthesis of neutron star mergers. In this paper, we introduce the latest status of kilonova modeling by focusing on the aspects of atomic physics. We perform systematic atomic structure calculations of r-process elements to understand element-to-element variation in the opacities. We demonstrate that the properties of the atomic structure of heavy elements are imprinted in the opacities of the neutron star merger ejecta and consequently in the kilonova light curves and spectra. Using this latest opacity dataset, we briefly discuss implications for GW170817, expected diversity of kilonova emission, and prospects for element identification in kilonova spectra.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要