Stochastic resonance, climate variability, and phase-tipping: The increasing risk of extinction in cyclic ecosystems

crossref(2023)

引用 0|浏览1
暂无评分
摘要
<p><strong>Global warming is expected to lead to increase in amplitude and autocorrelation in climate variability in most locations around the world. These changes could have a great and imminent impact on ecosystems. In this work, we demonstrate that changes in climate variability can drive cyclic predator-prey ecosystems to extinction via so-called phase tipping (P-tipping), a new type of instability that occurs only from certain phases of the predator-prey cycle. We coupled a simple mathematical model of climate variability to a self-oscillating paradigmatic predator-prey model. Most importantly, we combine realistic parameter values for the Canada lynx and snowshoe hare with actual climate data from the boreal forest to demonstrate that critically important species in the boreal forest have increased likelihood of extinction under predicted changes in climate variability. The cyclic populations of these species are most vulnerable during stages of the cycle when the predator population is near its maximum. We identify stochastic resonance as the underlying mechanism for the increased likelihood extinction.</strong></p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要