Experimental evidence for viscous deformation and strain localization in fractured granitoid rocks

Natalia Nevskaya, Weijia Zhan,Holger Stünitz,Alfons Berger,Marco Herwegh

crossref(2023)

引用 0|浏览4
暂无评分
摘要
<p>According to well-established hypotheses based on field observations of natural faults, viscous deformation may localize following pre-existing brittle fractures. The weak behaviour can be explained by brittle grain size reduction and phase mixing, which may activate grain size sensitive processes in the viscous field. To prove this hypothesis, it is necessary to perform experiments to observe the strain and stress evolution in faulted and non-faulted rocks. Pec et al. (2012) performed experiments on granitic rocks by shearing manually crushed granitic powder between coarse solid granitic forcing blocks. However, in their study, there are unavoidable boundary conditions between the forcing blocks and the gouge, and a comparison to an intact rock without fracture is difficult.</p> <p>In our study, we reduce the boundary conditions to a minimum and can directly compare the stresses and microstructural evolution during deformation of intact and fractured granitic ultramylonites at 650&#176;C, confining pressure of 1.2GPa, and a constant displacement rate of 10<sup>-8</sup>m/s. We perform these experiments on initially solid cylindrical samples in two experimental sets: In set A, we slowly apply the load and confining pressure, to ensure an intact rock sample is deformed. In set B, we create fractures before the experiment starts but already in the closed system of the experimental setup. Once experimental P/T conditions are reached, both experimental sets are deformed to different finite strains to investigate the associated microstructural evolution. The deformation is disseminated in the set A experiments, but localizes strongly along the fracture in experimental set B. The strain is accommodated by viscous granular flow incorporating an impressive grain size reduction of up to 1000x and dissolution/precipitation processes. In addition, the stress records show that in experiments A, initially a 30% higher yield stress has to be overcome before steady state flow, while in set B steady state flow is reached directly without a strain softening increment. In both sets, steady state stresses range around 300MPa, i.e. far below the confining pressure.</p> <p>Applying microstructural observations and mechanical data of our experiments to deformation of granitoid crust in nature reveals that fractures serve to reach mechanical steady state earlier compared to non-fractured crust. As a matter of strain, however, both settings may yield at the same mechanical strengths of resulting shear zones. It is important to note that polymineralic fine-grained ultramylonites are up to four times weaker than monomineralic quartz, presenting an important behaviour of efficient strain localization and rheological properties substantially below those of the end member minerals.</p> <p>&#160;</p> <p>Pec, M., St&#252;nitz, H. and Heilbronner, R., 2012. Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures<em>. Journal of Structural Geology, </em>vol. 38, pp.<em> </em>200-221. https://doi.org/10.1016/j.jsg.2011.09.001</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要