谷歌浏览器插件
订阅小程序
在清言上使用

Role of Resonance States of Muonic Molecule in Muon Catalyzed Fusion

JJAP conference proceedings(2023)

引用 0|浏览17
暂无评分
摘要
Muon catalyzed fusion (μCF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes. In the μCF reaction, muon transfer from deuteron to triton and muonic molecular formation are rate-limiting processes. In this work, we have investigated the role of resonance states of muonic molecule in the μCF which affects the muonic deuterium atom population. Solving simultaneous rate equations numerically by the fourth-order Runge-Kutta method, we determined the muonic molecular formation rate so that the number of fusion events reproduces a latest experimental result. It is revealed that the resonance states play a role to enhance the fusion rate by accelerating the de-excitation of the muonic atoms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要