Targeted high throughput mutagenesis of the human spliceosome reveals itsin vivooperating principles

Irene Beusch, Beiduo Rao, Michael Studer, Tetiana Luhovska, Viktorija Šukytė, Susan Lei,Juan Oses-Prieto, Em SeGraves,Alma Burlingame, Stefanie Jonas,Hiten D. Madhani

crossref(2022)

引用 0|浏览0
暂无评分
摘要
SUMMARYThe spliceosome is a staggeringly complex machine comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and interrogated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A-complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B binding site but also to the G-patch (ATPase activator) domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要