Electrified Operando-Freezing of Electrocatalytic CO2 Reduction Cells for Cryogenic Electron Microscopy

crossref(2023)

引用 0|浏览6
暂无评分
摘要
The ability to freeze and stabilize reaction intermediates in their metastable states and obtain their structural and chemical information with high spatial resolution would be very powerful to unravel the fundamentals in many important materials technologies such as catalysis and batteries. Here, we develop an electrified operando-freezing methodology for the first time to preserve these metastable states under electrochemical reaction conditions for cryogenic electron microscopy (cryo-EM) imaging and spectroscopy. Using Cu catalysts for CO2 reduction as a model system, we observe restructuring of the Cu catalyst in a CO2 atmosphere while the same catalyst remains intact in an air atmosphere at the nanometer scale. Furthermore, we discover the existence of single valance Cu (1+) state and C-O bonding at the electrified liquid-solid interface of the operando-frozen samples, which are key reaction intermediates that traditional ex situ measurements fail to detect. This work highlights our novel technique to study the local structure and chemistry of electrified liquid-solid interfaces, which has broad impact for many electrochemical reactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要