Using ecotoxicology for conservation: From biomarkers to modeling

Fish Physiology(2022)

引用 3|浏览1
暂无评分
摘要
An endless list of new chemicals are entering nature, which makes it an impossible task to assess all possible mixture combinations at all possible concentrations and conditions that are leading to the ubiquitous anthropogenic impacts on the aquatic environment resulting from deteriorating water quality. Therefore, ecotoxicology is moving more toward a mechanistic understanding of toxicological processes, using trait-based approaches and sublethal molecular and physiological endpoints to understand the mode of action of pollutants and the adverse outcomes at the organismal and population level. These molecular and physiological endpoints can be used as biomarkers, applicable in the field. This brings ecotoxicological research much closer to conservation physiology. Understanding the relationships between chemical reactivity in the water and in organisms, and assessing the consequences at higher levels, allows conservation physiologists and managers to take the right restoration measures for an optimal improvement of the aquatic habitats of concern. In this chapter we discuss the role which the promising approach of mechanistic-based Adverse Outcome Pathways (AOPs) can play in ecotoxicological research. It studies a pathway of events, from the direct interaction of a chemical with a molecular target, through subsequent intermediate events at cellular, tissue, organ and individual organism levels which then result in an Adverse Outcome (AO) relevant to ecotoxicological risk assessment and regulatory decision-making. In this context, we also discuss the importance of modeling, including bioavailability based and effect based models. Finally, we reflect on the possibilities that meta-analysis has to offer to detect unifying physiological processes, as well as interesting outliers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要