谷歌浏览器插件
订阅小程序
在清言上使用

Multiscale Simulation of Shock to Detonation in Condensed Phase Explosives

Journal of applied physics(2022)

引用 0|浏览5
暂无评分
摘要
Multiscale methods that are systematic, computationally efficient, and applicable to a wide range of materials are needed to complement experimental research in the development of improved explosives and propellants. Recent research has developed a new unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics using a nonholonomic modeling methodology. The method incorporates the first extension of hybrid particle-element methods to reacting media, the first computational development of an ignition and growth model for condensed phase explosives, and the first use of temperature-parameterized recombination reactions, allowing reacting molecular dynamics derived chemical kinetics to be directly incorporated into the macroscale thermomechanical model. The formulation includes general material and geometric nonlinearities and both Lagrangian and Eulerian reference frames and has been validated in multiscale simulations of shock to detonation in two nitramine explosives.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要