Long-read genome sequencing accelerated the cloning ofPm69by resolving the complexity of a rapidly evolving resistance gene cluster in wheat

crossref(2022)

引用 0|浏览5
暂无评分
摘要
AbstractGene cloning in repeat-rich polyploid genomes remains challenging. Here we describe a strategy for overcoming major bottlenecks in the cloning of the powdery mildew (Pm) resistance gene (R-gene)Pm69derived from tetraploid wild emmer wheat (WEW). A conventional positional cloning approach encountered suppressed recombination due to structural variations, while chromosome sorting yielded an insufficient purity level. APm69physical map, constructed by assembling ONT long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster. A single candidate NLR was identified within this cluster by anchoring RNASeq reads of susceptible mutants to ONT contigs and was validated by the virus-induced gene silencing (VIGS) approach.Pm69, comprising Rx_N with RanGAP interaction sites, NB-ARC, and LRR domains, is probably a newly evolved NLR discovered only in one location across the WEW distribution range in the Fertile Crescent.Pm69was successfully introgressed into durum and bread wheat, and a diagnostic molecular marker could be used to accelerate its deployment and pyramiding with other resistance genes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要