谷歌浏览器插件
订阅小程序
在清言上使用

The Recovery and Re-Calibration of a 13-Month Aerosol Extinction Profiles Dataset from Searchlight Observations from New Mexico, after the 1963 Agung Eruption

Atmosphere(2024)

引用 0|浏览4
暂无评分
摘要
The recovery and re-calibration of a dataset of vertical aerosol extinction profiles of the 1963/64 stratospheric aerosol layer measured by a searchlight at 32°N in New Mexico, US, is reported. The recovered dataset consists of 105 aerosol extinction profiles at 550 nm that cover the period from December 1963 to December 1964. It is a unique record of the portion of the aerosol cloud from the March 1963 Agung volcanic eruption that was transported into the Northern Hemisphere subtropics. The data-recovery methodology involved re-digitizing the 105 original aerosol extinction profiles from individual Figures within a research report, followed by the re-calibration. It involves inverting the original equation used to compute the aerosol extinction profile to retrieve the corresponding normalized detector response profile. The re-calibration of the original aerosol extinction profiles used Rayleigh extinction profiles calculated from local soundings. Rayleigh and aerosol slant transmission corrections are applied using the MODTRAN code in transmission mode. Also, a best-estimate aerosol phase function was calculated from observations and applied to the entire column. The tropospheric aerosol phase function from an AERONET station in the vicinity of the searchlight location was applied between 2.76 to 11.7 km. The stratospheric phase function, applied for a 12.2 to 35.2 km altitude range, is calculated from particle-size distributions measured by a high-altitude aircraft in the vicinity of the searchlight in early 1964. The original error estimate was updated considering unaccounted errors. Both the re-calibrated aerosol extinction profiles and the re-calibrated stratospheric aerosol optical depth magnitudes showed higher magnitudes than the original aerosol extinction profiles and the original stratospheric aerosol optical depth, respectively. However, the magnitudes of the re-calibrated variables show a reasonable agreement with other contemporary observations. The re-calibrated stratospheric aerosol optical depth demonstrated its consistency with the tropics-to-pole decreasing trend, associated with the major volcanic eruption stratospheric aerosol pattern when compared to the time-coincident stratospheric aerosol optical depth lidar observations at Lexington at 42° N.
更多
查看译文
关键词
stratospheric aerosol,tropospheric aerosol,lidar,searchlight
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要