Composite Materials: A Review of Polymer and Metal Matrix Composites, Their Mechanical Characterization, and Mechanical Properties

Mohamed Chairi, Jalal El Bahaoui,Issam Hanafi,Francisco Mata Cabrera,Guido Di Bella

Next Generation Fiber-Reinforced Composites - New Insights(2023)

引用 0|浏览2
暂无评分
摘要
Unlike conventional materials, composites have become an optimal option for a range of modern, industrial, clinical, and sports applications. This is combined with their noteworthy physical, thermal, electrical, and mechanical properties, as well as low weight and cost investment funds in certain cases. This review article attempts to give an overall outline of composite materials, regularly polymer-matrix composites (PMCs) and metal-matrix composites (MMCs). Polypropylene (PP) polymer and aluminum alloy were selected as matrices for this concentrate in light of their appealing properties and their use in different applications. Various studies address the different build-up materials, material handling, and the various properties. Mechanical characterization is an important cycle process for the development and design of composite materials and their components. It includes the determination of mechanical properties, for example, stiffness and strength according to standard test techniques (i.e., tensile, compression, and shear test strategies) distributed by the ASTM and EN ISO associations. Comparable to the determination of fatigue strength and fatigue life for composite materials. With respect to mechanical properties of composite materials, this paper reports several variables and limitations that affect mechanical property estimates, including material constituents, manufacturing process, test parameters, and environmental conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要