Abstract

LEAP - Legged Exploration of the Aristarchus Plateau

Patrick Bambach, Valentin Bickel,Hendrik Kolvenbach,Giorgio Valsecchi, Harald Steininger, Nicholas Eaton, Harald Hiesinger, Manish Patel

crossref(2022)

引用 0|浏览0
暂无评分
摘要
<p><strong><span dir="ltr" role="presentation">Abstract</span></strong><br role="presentation" /><span dir="ltr" role="presentation">Mobile robotic surface platforms are critical for the ex</span><span dir="ltr" role="presentation">ploration of the solar system. In the past, robotic ex-</span><br role="presentation" /><span dir="ltr" role="presentation">plorers were limited by their abilities to navigate and </span><span dir="ltr" role="presentation">traverse challenging terrain, such as boulder fields and</span><br role="presentation" /><span dir="ltr" role="presentation">slopes steeper than</span> <span dir="ltr" role="presentation">15</span><span dir="ltr" role="presentation">&#176;. The ESA topical team &#8217;LEAP&#8217; </span><span dir="ltr" role="presentation">studies the feasibility of using an innovative loco-</span><br role="presentation" /><span dir="ltr" role="presentation">motion system - a dynamically walking quadrupedal </span><span dir="ltr" role="presentation">robot - to address challenging terrain and unlock hard-</span><br role="presentation" /><span dir="ltr" role="presentation">to-reach, but high-reward scientific targets. Here, we </span><span dir="ltr" role="presentation">present preliminary results of this assessment, includ-</span><br role="presentation" /><span dir="ltr" role="presentation">ing 1) the selection of several promising science tar</span><span dir="ltr" role="presentation">gets that are inaccessible by traditional means, 2) our</span><br role="presentation" /><span dir="ltr" role="presentation">robotic platform, 3) a provisional payload suite that </span><span dir="ltr" role="presentation">can address relevant science questions, and 4) sugges-</span><br role="presentation" /><span dir="ltr" role="presentation">tions for future hard- and software developments.&#160;</span></p> <p><span dir="ltr" role="presentation"><img src="" alt="" /></span></p> <p><span dir="ltr" role="presentation"><strong>Plain Language Summary</strong><br role="presentation" />Geologically interesting sites, such as outcrops, slopes, and caves, are often difficult to access. The<br role="presentation" />ESA Topical team &#8217;LEAP&#8217; studies the feasibility of using an innovative locomotion platform - a legged<br role="presentation" />robot - to access such sites, potentially enabling unprecedented sampling and science opportunities. In<br role="presentation" />this work, we present our preliminary findings.&#160;</span></p> <p><span dir="ltr" role="presentation"><br role="presentation" /><strong>1. Mission scenario</strong><br role="presentation" />Triggered by ESA&#8217;s call for ideas(https://tinyurl.com/mrxn8f5u) on exploring the Moon with a large European lander (L3), we have<br role="presentation" />formed a topical team to assess the potential of an innovative robotic platform to provide access to<br role="presentation" />high-risk & high-reward targets on the moon(Fig. 1).&#160; &#8217;LEAP&#8217; (Legged Exploration of the<br role="presentation" />Aristarchus Plateau) is considering science targets on the Aristarchus plateau (AP).</span></p> <p><span dir="ltr" role="presentation">AP is a geologically uniquely diverse region that hosts one of the highest<br role="presentation" />concentrations of volcanic features - including an irregular mare patch (IMP) and widespread evidence<br role="presentation" />for multiphased volcanism (Glotch et al., 2020). While our analysis of the plateau and the literature is<br role="presentation" />currently ongoing, we identified four geologic targets that appear to be inaccessible by traditional surface<br role="presentation" />assets, but could potentially enable transformational science: #1 the flank and peak of Herodotus Mons, #2<br role="presentation" />pits in Aristarchus&#8217; IMP, #3 skylights and fractured terrain around Aristarchus crater&#8217;s central peak, and<br role="presentation" />#4 the bright outcrops at Cobra Head (Fig. 2a). The identified targets enable the study of a large<br role="presentation" />number of highly relevant science objectives, including many of ESA&#8217;s priority goals, such as: A) the<br role="presentation" />analysis of new and diverse (silicic, basaltic, and other) samples, B) the detection & characterization<br role="presentation" />of volatiles, C)&#160; deployment of geophysical instruments, D) the characterization of the lunar dust envi-<br role="presentation" />ronment, while E) demonstrating unprecedented surface mobility (ESA, 2019). Sites could be traversed<br role="presentation" />by one or multiple quadruped robots within one lunar day, starting from, for example, ESA&#8217;s L3(</span><span dir="ltr" role="presentation">https://tinyurl.com/2p8vfd9n</span>)<span dir="ltr" role="presentation">.</span></p> <p><span dir="ltr" role="presentation"><img src="" alt="" /></span></p> <div class="ui-layout-east ui-layout-pane ui-layout-pane-east ui-layout-pane-hover ui-layout-pane-east-hover ui-layout-pane-open-hover ui-layout-pane-east-open-hover"> <div class="ng-scope"> <div class="pdf full-size"> <div class="pdf-viewer"> <div class="pdfjs-viewer pdfjs-viewer-outer"> <div class="pdfjs-viewer-inner" tabindex="0" role="tabpanel"> <div class="pdfViewer"> <div class="page" role="region" data-page-number="2" aria-label="Page 2" data-loaded="true"> <div class="textLayer"><strong><span dir="ltr" role="presentation">2</span> <span dir="ltr" role="presentation">Legged robots for exploration</span></strong><br role="presentation" /><span dir="ltr" role="presentation">Legged</span> <span dir="ltr" role="presentation">locomotion</span> <span dir="ltr" role="presentation">systems</span> <span dir="ltr" role="presentation">are</span> <span dir="ltr" role="presentation">ideal</span> <span dir="ltr" role="presentation">to</span> <span dir="ltr" role="presentation">navigate </span><span dir="ltr" role="presentation">difficult terrain on Mars or the Moon. They are less</span><br role="presentation" /><span dir="ltr" role="presentation">likely to get stuck in loose regolith and can traverse </span><span dir="ltr" role="presentation">slopes up to</span> <span dir="ltr" role="presentation">25</span><span dir="ltr" role="presentation">&#176; or steeper, including large rocks</span><br role="presentation" /><span dir="ltr" role="presentation">and other obstacles.</span> <span dir="ltr" role="presentation">LEAP uses the quadrupedal </span><span dir="ltr" role="presentation">robot ANYmal</span> <span dir="ltr" role="presentation">(Hutter et al., 2017)</span><span dir="ltr" role="presentation">.</span> <span dir="ltr" role="presentation">ANYmal can</span><br role="presentation" /><span dir="ltr" role="presentation">adapt its walking mode to different environmental </span><span dir="ltr" role="presentation">conditions. These modes range from energy-efficient,</span><br role="presentation" /><span dir="ltr" role="presentation">over traversing,</span> <span dir="ltr" role="presentation">to stabilized walking.</span> <span dir="ltr" role="presentation">The latter </span><span dir="ltr" role="presentation">allows to satisfy measurement requirements of the</span><br role="presentation" /><span dir="ltr" role="presentation">instruments. The traversing mode allows for</span> <span dir="ltr" role="presentation">0</span><span dir="ltr" role="presentation">.</span><span dir="ltr" role="presentation">5 m</span><span dir="ltr" role="presentation">/</span><span dir="ltr" role="presentation">s </span><span dir="ltr" role="presentation">to cross low-risk & low-interest areas efficiently.</span><br role="presentation" /><span dir="ltr" role="presentation">ANYmal can use its limbs to manipulate the envi</span><span dir="ltr" role="presentation">ronment, including trenching and scraping. ANYmal&#8217;s</span><br role="presentation" /><span dir="ltr" role="presentation">locomotion system proved its reliability in dusty envi</span><span dir="ltr" role="presentation">ronments as the joints need to only allow rotations of</span><br role="presentation" /><span dir="ltr" role="presentation">up to</span> <span dir="ltr" role="presentation">270</span><span dir="ltr" role="presentation">&#176; and are sealed against dust. The robot can </span><span dir="ltr" role="presentation">recover and get back on its feet from any position and</span><br role="presentation" /><span dir="ltr" role="presentation">is able to fall back to three- or even two-legged walk</span><span dir="ltr" role="presentation">ing if one or two legs fail.</span><br role="presentation" /><strong><span dir="ltr" role="presentation">3. Instrumentation</span></strong><br role="presentation" /><span dir="ltr" role="presentation">The initial design has a payload mass bud</span><span dir="ltr" role="presentation">get of</span> <span dir="ltr" role="presentation">15 kg</span> <span dir="ltr" role="presentation">and provides between</span> <span dir="ltr" role="presentation">15 W</span> <span dir="ltr" role="presentation">to</span> <span dir="ltr" role="presentation">100 W</span> <span dir="ltr" role="presentation">of</span><br role="presentation" /><span dir="ltr" role="presentation">power, depending on the current thermal loads.</span> <span dir="ltr" role="presentation">For </span><span dir="ltr" role="presentation">the (autonomous) operation of the robot, two baseline</span><br role="presentation" /><span dir="ltr" role="presentation">instruments are used: lidars and cameras, which pro</span><span dir="ltr" role="presentation">vide&#160; 3D information for navigation</span><span dir="ltr" role="presentation">.</span></div> <div class="textLayer"><span dir="ltr" role="presentation">Depending on the mission profile, a variety </span><span dir="ltr" role="presentation">of additional science payloads can be attached to the</span><br role="presentation" /><span dir="ltr" role="presentation">robot, such as a ground-penetrating radar, a gravime</span><span dir="ltr" role="presentation">ter,&#160; neutron or mass spectrometers or a</span><br role="presentation" /><span dir="ltr" role="presentation">sampling arm, & VIS/NIR/UV imager, </span><span dir="ltr" role="presentation">and a Raman spectrometer.</span> <span dir="ltr" role="presentation">The current list of pay-</span><br role="presentation" /><span dir="ltr" role="presentation">loads allows the robot to address a wide range of sci</span><span dir="ltr" role="presentation">ence questions related to geomorphology, mineralogy,</span><br role="presentation" /><span dir="ltr" role="presentation">and petrography. We are currently refining the </span><span dir="ltr" role="presentation">&#160;selection of payloads.</span></div> <div class="textLayer">&#160;</div> <div class="textLayer"><strong><span dir="ltr" role="presentation">Acknowledgements</span></strong></div> <div class="textLayer"><span dir="ltr" role="presentation">This topical team is supported by ESA under grant</span><br role="presentation" /><span dir="ltr" role="presentation">agreement 4000135310/21/NL/PA/pt.</span></div> </div> </div> </div> <div class="pdfjs-controls"> <div class="btn-group">&#160;</div> </div> </div> </div> </div> </div> </div> <div class="ui-layout-resizer-controls synctex-controls">&#160;</div> <p>&#160;</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要