Baby’s First Macrophage: How do placental macrophages (Hofbauer Cells, HCs) contribute to immune tolerance and infection response during pregnancy?

The Journal of Immunology(2019)

引用 0|浏览0
暂无评分
摘要
Abstract Placental immunity is dichotomous: tolerance of the semiallogenic fetus is balanced with limiting transmission of maternal pathogens. HCs are the major fetal immune cell at the placenta, but mechanisms responsible for maintaining immune homeostasis while preventing infection require elucidation. We determined the phenotype of human HCs throughout gestation and analyzed stimulation response. Activated HCs were present in early pregnancy and reduced in number by term while maintaining similar phenotypes. Tolerant HC numbers were highest in midgestation, after a relatively intolerant phenotype early in gestation. We saw a significant shift in macrophage polarization as gestation progressed. Transcription of ARG2 exceeded iNOS at all points, reaching 10-fold higher at term. Following treatment with IL4+IL13 or IFNγ+LPS midgestation HCs underwent significant phenotype change and activation. Basal expression of antiviral IFN stimulated genes (ISGs) was lowest at midgestation and was enhanced by IFN-α and IFN-λ1 with a 10-fold stronger response to IFN-α. RIG-I agonism induced HC activation, 10-fold iNOS upregulation and enhanced transcription of IFNs, MDA5, RIG-I, and ISGs. Response to stimulation by IFNγ+LPS, IL4+IL13, IL1β+HAGG was limited to loss of tolerance at term. IL-10 treatment increased numbers of CD163+ HCs, and IFNγ+LPS caused loss of discernible polarization patterns. Basal expression of RIG-I, MDA5 and ISGs was highest in term HCs, but IFN-α did not activate them. RIG-I agonism reduced markers of tolerance. HCs are variable macrophages, with phenotype and immune capacity strongly dependent on gestational age. Understanding placental immunobiology is fundamental to addressing key pregnancy morbidities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要