Recombinant reporter phage rTUN1::nLuc enables rapid detection and real-time antibiotic susceptibility testing of Klebsiella pneumoniae K64 strains

ACS Sensors(2022)

引用 4|浏览0
暂无评分
摘要
AbstractThe emergence of multi drug resistant (MDR) Klebsiella pneumoniae (Kp) strains constitutes an enormous threat to global health as MDR associated treatment failure causes high mortality rates in nosocomial infections. Rapid pathogen detection and antibiotic resistance screening is therefore crucial for successful therapy and thus, patient survival. Reporter phage-based diagnostics offer a way to speed up pathogen identification and resistance testing, as integration of reporter genes into highly specific phages allow real-time detection of phage replication and thus, living host cells. Kp specific phages use the host’s capsule, a major virulence factor of Kp, as receptor for adsorption. To date, 80 different Kp capsule types (K-serotypes) have been described with predominant capsule types varying between different countries and continents. Therefore, reporter phages need to be customized according to the locally prevailing variants. Recently, we described the autographivirus vB_KpP_TUN1 (TUN1), which specifically infects Kp K64 strains, the most predominant capsule type at the military hospital in Tunis (MHT) that is also associated with high mortality rates. In this work, we developed the highly specific recombinant reporter phage rTUN1::nLuc, which produces Nanoluciferase (nLuc) upon host infection and thus, enables rapid detection of Kp K64 cells in clinical matrices such as blood and urine. At the same time, rTUN1::nLuc allows for rapid antibiotic susceptibility testing and therefore identification of suitable antibiotic treatment in less than 3 hours.
更多
查看译文
关键词
recombinant reporter phage,antibiotic susceptibility testing,strains,real-time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要