Evidence for a gamma-ray molecular target in the enigmatic PeVatron candidate LHAASO J2108+5157

ASTRONOMY & ASTROPHYSICS(2023)

引用 1|浏览11
暂无评分
摘要
To determine the nature of the PeVatron's emission (hadronic or leptonic), it is essential to characterize the physical parameters of the environment from where it originates. We unambiguously confirm the association of molecular gas with the PeVatron candidate LHAASO J2108+5157 using unprecedented high angular-resolution (17$^{\prime \prime}$) $^{12,13}$CO($J$=1$\rightarrow$0) observations carried out with the Nobeyama 45m radio telescope. We characterize a molecular cloud in the vicinity of the PeVatron candidate LHAASO J2108+5157 by determining its physical parameters from our $^{12,13}$CO($J$=1$\rightarrow$0) line observations. We use an updated estimation of the distance to the cloud, which allows us to obtain a more reliable result. The molecular emission is compared with excess gamma-ray images obtained with Fermi--LAT at energies above 2 GeV to search for spatial correlations and test a possible hadronic ($\pi^0$ decay) origin for the gamma-ray emission. We find that the morphology of the spatial distribution of the CO emission is strikingly similar to that of the Fermi--LAT excess gamma-ray. By combining our observations with archival 21cm HI line data, the nucleons (HI + H$_2$) number density of the target molecular cloud is found to be 133.0 $\pm$ 45.0 cm$^{-3}$, for the measured angular size of 0.55 $\pm$ 0.02$^\circ$ at a distance of 1.6 $\pm$ 0.1 kpc. The resulting total mass of the cloud is M(HI +H$_2$) = 7.5$\pm$2.9$\times$10$^3$ M$_{\odot}$. Under a hadronic scenario, we obtain a total energy of protons of W$_p$ = 4.3$\pm$1.5 $\times$ 10$^{46}$ erg with a cutoff of 700$\pm$300 TeV, which reproduces the sub-PeV gamma-ray emission. We identified a molecular cloud in the vicinity of LHAASO J2107+5157 as the main target where cosmic rays from an unknown PeVatron produce the observed gamma-ray emission via $\pi^0$ decay.
更多
查看译文
关键词
radio lines: ISM, ISM: molecules, gamma rays: ISM, methods: data analysis, ISM: clouds, ISM: individual objects: LHAASO J2108+5157
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要