Efficient solver of relativistic hydrodynamics with implicit Runge-Kutta method

Nathan Touroux, Masakiyo Kitazawa, Koichi Murase, Marlene Nahrgang

Progress of Theoretical and Experimental Physics(2023)

引用 0|浏览1
暂无评分
摘要
We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge-Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss-Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)-dimensional Riemann problem, as well as the (2+1)-dimensional Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TrENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δ t. By showing a relationship between the one-stage Gauss-Legendre method with the iterative solver and the two-step Adams-Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要