Enhanced multi-fidelity modeling for digital twin and uncertainty quantification

CoRR(2023)

引用 0|浏览1
暂无评分
摘要
The increasing significance of digital twin technology across engineering and industrial domains, such as aerospace, infrastructure, and automotive, is undeniable. However, the lack of detailed application-specific information poses challenges to its seamless implementation in practical systems. Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions by leveraging data and computational models. Nonetheless, the fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models, which serve as the connection between physical systems and digital twin models. To address this challenge, we propose a novel framework that begins by developing a robust multi-fidelity surrogate model, subsequently applied for tracking digital twin systems. Our framework integrates polynomial correlated function expansion (PCFE) with the Gaussian process (GP) to create an effective surrogate model called H-PCFE. Going a step further, we introduce deep-HPCFE, a cascading arrangement of models with different fidelities, utilizing nonlinear auto-regression schemes. These auto-regressive schemes effectively address the issue of erroneous predictions from low-fidelity models by incorporating space-dependent cross-correlations among the models. To validate the efficacy of the multi-fidelity framework, we first assess its performance in uncertainty quantification using benchmark numerical examples. Subsequently, we demonstrate its applicability in the context of digital twin systems.
更多
查看译文
关键词
Multi-fidelity, Deep-H-PCFE, Uncertainty quantification, Surrogate models, Digital twin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要