谷歌浏览器插件
订阅小程序
在清言上使用

Universal thermal response of the multiscale nanodomains formed in trans-anethol/ethanol/water surfactant-free microemulsion

arXiv (Cornell University)(2023)

引用 0|浏览8
暂无评分
摘要
Hypothesis: Surfactant-free microemulsion (SFME), an emerging phenomenology that occurs in the monophasic zone of a broad category of ternary mixtures 'hydrophobe/hydrotrope/water', has attracted extensive interests due to their unique physicochemical properties. The potential of this kind of ternary fluid for solubilization and drug delivery make them promising candidates in many industrial scenarios. Experiments: Here the thermodynamic behavior of these multiscale nanodomains formed in the ternary trans-anethol/ethanol/water system over a wide range of temperatures is explored. The macroscopic physical properties of the ternary solutions are characterized, with revealing the temperature dependence of refractive index and dynamic viscosity. Findings: With increasing temperature, the ternary system shows extended areas in the monophasic zone. We demonstrate that the phase behavior and the multiscale nanodomains formed in the monophasic zone can be precisely and reversibly tuned by altering the temperature. Increasing temperature can destroy the stability of the multiscale nanodomains in equilibrium, with an exponential decay in the scattering light intensity. Nevertheless, molecular-scale aggregates and mesoscopic droplets exhibit significantly different response behaviors to temperature stimuli. The temperature-sensitive nature of the ternary SFME system provides a crucial step forward exploring and industrializing its stability.
更多
查看译文
关键词
multiscale nanodomains,universal thermal response,trans-anethol,surfactant-free
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要