Synergistically Enhanced Single-Atom Nickel Catalysis for Alkaline Hydrogen Evolution Reaction

ACS Applied Materials & Interfaces(2022)

引用 0|浏览4
暂无评分
摘要
The feature endowing atomic Ni-N-C electrocatalysts with exceptional intrinsic alkaline hydrogen evolution activity is hitherto not well-documented and remains elusive. To this end, we rationally exploited the hierarchical porous carbon microstructures as scaffolds to construct unique Ni-N2+2-S active sites to boost the sluggish Volmer reaction kinetics. Density functional theory reveals an obvious d-band center (ϵd) upshift of the edge-hosted Ni-N2+2-S sites compared with pristine Ni-N4, which translates to a more stabilized OH adsorption. Moreover, the synergetic dual-site (Ni and S atom) interplay gives rise to a decoupled regulation of the adsorption strength of intermediate species (OHad, Had) and thereby energetic water dissociation kinetics. Bearing these in mind, sodium thiosulfate was deliberately adopted as an additive in the molten salt system for controllable synthesis, considering the simultaneous catalyst morphology and active-site modulation. The target Ni-N2+2-S catalyst delivers a low working overpotential (83 mV@10 mA cm-2) and Tafel slope (100.5 mV dec-1) comparable to those of representative transition metal-based electrodes in alkaline media. The present study provides insights into the metal active-site geometry and promising synergistic effects over single-atom catalysis.
更多
查看译文
关键词
hydrogen,nickel,single-atom
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要