Stress-corrosion coupled damage localization induced by secondary phases in bio-degradable Mg alloys: phase-field modeling

JOURNAL OF MAGNESIUM AND ALLOYS(2024)

引用 0|浏览0
暂无评分
摘要
In this study, a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage (SCCD). The coupling constitutive relationships of the deformation, phase-field damage, mass transfer, and electrostatic field are derived from the entropy inequality. The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements. The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results. To capture the damage localization, a micro-galvanic corrosion domain is defined, and the buffering effect on charge migration is explored. Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale. (c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University
更多
查看译文
关键词
Phase field,Mg alloys,Stress-corrosion coupled damage,Damage localization,Finite element method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要