Radical chemistry at a UK coastal receptor site – Part 2: experimental radical budgets and ozone production

crossref(2022)

引用 0|浏览4
暂无评分
摘要
Abstract. In our companion paper (Woodward-Massey et al., 2022), we presented measurements of radical species and OH reactivity (k ’OH) made in summer 2015 during the ICOZA (Integrated Chemistry of OZone in the Atmosphere) field campaign at the Weybourne Atmospheric Observatory, a site on the east coast of the UK. In the present work, we used the simultaneous measurement of OH, HO2, total RO2, and k ’OH to derive experimental (i.e., observationally determined) budgets for all radical species as well as total ROx (= OH + HO2 + RO2). Data were separated according to wind direction: prevailing SW winds (with influence from London and other major conurbations), and all other winds (NW–SE; predominantly marine in origin). In NW–SE air, the ROx budget could be closed during the daytime within experimental uncertainty but OH destruction exceeded OH production, and HO2 production greatly exceeded HO2 destruction while the opposite was true for RO2. In SW air, the ROx budget analysis indicated missing daytime ROx sources but the OH budget was balanced, and the same imbalances were found with the HO2 and RO2 budgets as in NW–SE air. For HO2 and RO2, the budget imbalances were most severe at high NO mixing ratios. We explored several mechanistic modifications to the experimental budgets to try to reconcile the HO2 and RO2 budget imbalances: (1) the addition of generic radical recycling processes, (2) reduction of the rate of RO2 → HO2 conversion, (3) inclusion of heterogeneous HO2 uptake, and (4) addition of chlorine chemistry. The best agreement between HO2 and RO2 production and destruction rates was found for option (2), in which we reduced the RO2 + NO rate constant by a factor of 5. The rate of in situ ozone production (P(Ox)) was calculated from observations of ROx, NO, and NO2 and compared to that calculated from MCM-modelled radical concentrations. The MCM-calculated P(Ox) significantly underpredicted the measurement-calculated P(Ox) in the morning, and the degree of underprediction was found to scale with NO.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要