Teleconnection-driven sub-seasonal predictability of extreme events: Relevant case studies

crossref(2022)

引用 0|浏览3
暂无评分
摘要
<p>Extreme weather events have devastating impacts on human health, economic activities, ecosystems, and infrastructure. It is therefore crucial to anticipate extremes and their impacts to allow for preparedness and emergency measures. There is indeed potential for probabilistic subseasonal prediction on timescales of several weeks for selected cases of extreme events that are linked to remote drivers and large-scale teleconnections. We here present a range of case studies, including heatwaves, cold spells, and tropical cyclones, where precursors and global linkages may have improved sub-seasonal predictability. These linkages include teleconnections from the tropics as well as the stratosphere, in addition to circumglobal teleconnections. The considered heatwaves exhibit predictability on timescales of 3-4 weeks, while this timescale is 2-3 weeks for cold spells. Precipitation extremes are the least predictable among the considered extremes. Tropical cyclones, on the other hand, can exhibit probabilistic forecast skill on timescales of&#160; up to 3 weeks,&#160; which tends to be favored by remote precursors such as the Madden-Julian Oscillation. These case studies clearly illustrate the potential for event &#8211; dependent advance warnings for a wide range of extreme events globally. The subseasonal predictability of extreme events allows for an extension of warning horizons, can provide advance information to impact modelers, and informs communities and stakeholders affected by the impacts of extreme weather events.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要