Antagonistic Role of Aqueous Complexation in the Solvent Extraction and Separation of Rare Earth Ions

crossref(2021)

引用 0|浏览5
暂无评分
摘要
During solvent extraction of rare earth ions, an aqueous electrolyte solution is placed in contact with an immiscible organic solution of extractants to enable extractant-facilitated transport of ions into the organic solvent. Although ex-perimental methodologies such as x-ray and neutron scattering have been applied to characterize ion-extractant complexes, identifying the site of ion-extractant complexation has proven challenging. Here, we use tensiometry and surface-sensitive x-ray scattering to study the surface of aqueous solutions of lanthanide chlorides and the water-soluble extractant bis(2-ethylhexyl) phosphate (HDEHP), in the absence of a coexisting organic solvent. These studies restrict interactions of HDEHP with trivalent lanthanide ions to the aqueous phase and the liquid-vapor interface, allowing us to explore the consequences that one or the other is the site of ion-extractant complexation. Unexpectedly, we find that light lanthanides preferentially occupy the liquid-vapor interface, with an overwhelming preference for a light lanthanide, Nd, when present in a mixture with a heavy lanthanide, Er. This contradicts our expectation that heavy lanthanides should have a higher interfacial density since they are preferentially extracted by HDEHP in the presence of an organic phase. These results reveal the antagonistic role played by ion-extractant complexation within the aqueous phase and clarify the potential advantages of water-insoluble extractants that interact with ions primarily at the interface during the process of solvent extraction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要