Dispersive perfectly matched layers and high-order absorbing boundary conditions for electromagnetic quasinormal modes

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION(2023)

引用 0|浏览10
暂无评分
摘要
Resonances, also known as quasinormal modes (QNMs) in the non-Hermitian case, play a ubiquitous role in all domains of physics ruled by wave phenomena, notably in continuum mechanics, acoustics, electrodynamics, and quantum theory. The non-Hermiticity arises from the system losses, whether they are material (Joule losses in electromagnetism) or linked to the openness of the problem (radiation losses). In this paper, we focus on the latter delicate matter when considering bounded computational domains mandatory when using, e.g., finite elements. We address the important question of whether dispersive perfectly matched layer (PML) and high-order absorbing boundary conditions offer advantages in QNM computation and modal expansion of the optical responses compared with nondispersive PMLs. (c) 2023 Optica Publishing Group
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要