谷歌浏览器插件
订阅小程序
在清言上使用

Intelligent Fault Diagnosis Based on Dynamic Convolutional Depth Domain Adaptive Network

crossref(2021)

引用 0|浏览5
暂无评分
摘要
Abstract Deep learning-based mechanical fault diagnosis method has made great achievements. A high-performance neural network model requires sufficient labelled data for training to obtain accurate classification results. Desired results mainly depends on assumption that training and testing data are collected under the same working conditions, environment and operating conditions, where the data have the same probability distribution. However, in the practical scenarios, training data and the testing data follow different distributions to some degree, and the newly collected testing data are usually unlabeled. In order to solve the problems above, a model based on transfer learning and domain adaptation is proposed to achieve efficient fault diagnosis under different data distributions. The proposed framework adapts the features extracted by multiple dynamic convolutional layers, and creatively utilizes correlation alignment(CORAL) to perform a non-linear transformation to align the second-order statistics of the two distributions for fault diagnosis, which greatly improves the accuracy of fault classification in the target domain under unlabeled data. Finally, experimental verifications have been carried out among two different datasets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要