An explicit GPU-based material point method solver for elastoplastic problems (ep2-3De v1.0)

crossref(2021)

引用 0|浏览0
暂无评分
摘要
Abstract. We propose an explicit GPU-based solver within the material point method (MPM) framework on a single graphics pro- cessing unit (GPU) to resolve elastoplastic problems under two- and three-dimensional configurations (i.e., granular collapses and slumping mechanics). Modern GPU architectures, including Ampere, Turing and Volta, provide a computational framework that is well suited to the locality of the material point method in view of high-performance computing. For intense and nonlocal computational aspects (i.e., the back-and-forth mapping between the nodes of the background mesh and the material points), we use straightforward atomic operations (the scattering paradigm). We select the generalized interpolation material point method (GIMPM) to resolve the cell-crossing error, which typically arises in the original MPM, because of the C0 continuity of the linear basis function. We validate our GPU-based in-house solver by comparing numerical results for granular collapses with the available experimental data sets. Good agreement is found between the numerical results and experimental results for the free surface and failure surface. We further evaluate the performance of our GPU-based implementation for the three-dimensional elastoplastic slumping mechanics problem. We report i) a maximum performance gain of x200 between a CPU- and GPU-based implementation, provided that ii) the hardware limit (i.e., the peak memory bandwidth) of the device is reached. We finally showcase an application to slumping mechanics and demonstrate the importance of a three-dimensional configuration coupled with heterogeneous properties to resolve complex material behaviour.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要