EGF signaling promotes the lineage conversion of astrocytes into oligodendroglias

crossref(2021)

引用 0|浏览0
暂无评分
摘要
Abstract Background The conversion of astrocytes activated by nerve injuries to oligodendrocytes is not only beneficial to axonal remyelination, but also helpful for reversal of glial scar. Recent studies have shown that Sox10 transcription factor can achieve this transdifferentiation process in collaboration with some unknown factors in the pathological microenvironment. The extracellular factors underlying the cell fate switching are not known. Methods Astrocytes were obtained from mouse cortical dissociation culture and purified by differential adherent properties. The lineage conversion of astrocytes into oligodendrocyte lineage cells was carried out by Sox10-expressing virus infection both in vitro and in vivo, meanwhile, epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) inhibitor Gefitinib were adopted to investigate the function of EGF signaling in this fate transition process. Pharmacological inhibition analyses were performed to examine the pathway connecting the EGF with the expression of oligodendrogenic genes and cell fate transdifferentiation. Results EGF treatment facilitated the Sox10-induced transformation of astrocytes to O4+ induced oligodendrocyte precursor cells (iOPCs) in vitro. The transdifferentiation of astrocytes to iOPCs went through two distinct but interconnected processes: (1) dedifferentiation of astrocytes to astrocyte precursor cells (APCs); (2) transformation of APCs to iOPCs, EGF signaling was involved in both processes. And EGF triggered astrocytes to express oligodendrogenic genes Olig1 and Olig2 by activating extracellular signal-regulated kinase 1 and 2 (Erk1/2) pathway. In addition, we discovered that EGF can enhance astrocyte transdifferentiation in injured spinal cord tissues. Conclusions These findings provide strong evidence that EGF facilitates the transdifferentiation of astrocytes to oligodendroglias, and suggest that targeting the EGF-EGFR-Erk1/2 signaling axis may represent a novel therapeutic strategy for myelin repair in injured central nervous system (CNS) tissues.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要