Ethanol inhibits dopamine uptake via organic cation transporter 3: Implications for ethanol and cocaine co-abuse

N. J. Clauss,F. P. Mayer,W. A. Owens, M. Vitela, K. M. Clarke, M. A. Bowman, R. E. Horton,D. Gründemann,D. Schmid, M. Holy,G. G. Gould,W. Koek,H. H. Sitte,L. C. Daws

Molecular Psychiatry(2023)

引用 2|浏览3
暂无评分
摘要
Concurrent cocaine and alcohol use is among the most frequent drug combination, and among the most dangerous in terms of deleterious outcomes. Cocaine increases extracellular monoamines by blocking dopamine (DA), norepinephrine (NE) and serotonin (5-HT) transporters (DAT, NET and SERT, respectively). Likewise, ethanol also increases extracellular monoamines, however evidence suggests that ethanol does so independently of DAT, NET and SERT. Organic cation transporter 3 (OCT3) is an emergent key player in the regulation of monoamine signaling. Using a battery of in vitro, in vivo electrochemical, and behavioral approaches, as well as wild-type and constitutive OCT3 knockout mice, we show that ethanol’s actions to inhibit monoamine uptake are dependent on OCT3. These findings provide a novel mechanistic basis whereby ethanol enhances the neurochemical and behavioral effects of cocaine and encourage further research into OCT3 as a target for therapeutic intervention in the treatment of ethanol and ethanol/cocaine use disorders.
更多
查看译文
关键词
dopamine uptake,ethanol,organic cation transporter,cocaine,co-abuse
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要