Nickel nanoparticle–decorated reduced graphene oxide via one-step microwave-assisted synthesis and its lightweight and flexible composite with Polystyrene- block -poly(ethylene- ran -butylene)- block -polystyrene polymer for electromagnetic wave shielding application

ADVANCED COMPOSITES AND HYBRID MATERIALS(2023)

引用 1|浏览6
暂无评分
摘要
Nickel nanoparticle–decorated reduced graphene oxide nanocomposites (NiG) were prepared by a one-step microwave-assisted solvothermal method. The as-prepared NiG nanocomposite systems were further heated up to 800 °C under an inert atmosphere (named NiG-800) to modify their structural and electromagnetic properties. Thereafter, these developed NiG-800 nanocomposite systems of rGO and nickel nanoparticles (25 wt.%) were applied as nanofillers (50 wt.% and 70 wt.%) in a SEBS (Polystyrene- block -poly(ethylene- ran -butylene)- block -polystyrene) polymer matrix to create NiG-800(50)-SEBS and NiG-800(70)-SEBS nanocomposites. The addition of NiG-800 to SEBS led to an increase of Young’s modulus from 16 (SEBS) to 35 MPa (NiG-800(70)-SEBS) while the maximum elongation is still around 300%. The developed NiG-800(70)-SEBS nanocomposite exhibited high-performance electromagnetic wave absorption (minimum reflection loss RL min ≈ –48.2 dB at 9.29 GHz) at a low thickness of 2.3 mm in the frequency range of 8.2−12.4 GHz. The prepared NiG-800(70)-SEBS nanocomposite has the potential of an electromagnetic wave absorber. The NiG-800(70)-SEBS nanocomposite reported here has total shielding efficiency > 10 dB at a thickness of 1 mm in the whole frequency range (X-band) with reflection ≈ 50% and absorption ≈ 40% which has the potential for electromagnetic wave absorber applications.
更多
查看译文
关键词
Nickel,Nanoparticles,Reduced graphene oxide,Microwave synthesis,Polymer,Composite,Electromagnetic shielding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要