A novel simulated annealing trajectory optimization algorithm in an autonomous UAVs-empowered MFC system for medical internet of things devices

WIRELESS NETWORKS(2023)

引用 0|浏览14
暂无评分
摘要
This article investigates a new autonomous mobile fog computing (MFC) system empowered by multiple unmanned aerial vehicles (UAVs) in order to serve medical Internet of Things devices (MIoTDs) efficiently. The aim of this article is to reduce the energy consumption of the UAVs-empowered MFC system by designing UAVs’ trajectories. To construct the trajectories of UAVs, we need to consider not only the order of SPs but also the association among UAVs, SPs, and MIoTDs. The above-mentioned problem is very complicated and is difficult to be handled via applying traditional techniques, as it is NP-hard, nonlinear, non-convex, and mixed-integer. To handle this problem, we propose a novel simulated annealing trajectory optimization algorithm (SATOA), which handles the problem in three phases. First, the deployment (i.e., number and locations) of stop points (SPs) is updated and produced randomly using variable population sizes. Accordingly, MIoTDs are associated with SPs and extra SPs are removed. Finally, a novel simulated annealing algorithm is proposed to optimize UAVs’ association with SPs as well as their trajectories. The performance of SATOA is demonstrated by performing various experiments on nine instances with 40 to 200 MIoTDs. The simulation results show that the proposed SATOA outperforms other compared state-of-the-art algorithms in terms of saving energy consumption.
更多
查看译文
关键词
Mobile fog computing, Simulated annealing algorithm, Unmanned aerial vehicle, Meta-heuristic algorithm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要