Photocatalytic Degradation of Diclofenac in Tap Water on TiO2 Nanotubes Assisted with Ozone Generated from Boron-Doped Diamond Electrode

CATALYSTS(2023)

引用 0|浏览0
暂无评分
摘要
Degradation of pharmaceuticals in water by TiO2 photocatalysis often suffers from low efficiency due to low activity and mass transfer limitation. In this work, diclofenac removal in tap water was performed by photocatalysis on TiO2 nanotube growth on Ti mesh substrate assisted by ozone (O-3), which was generated from a hole-arrayed boron-doped diamond (HABDD) film electrode. The vertically oriented TiO2 nanotubes were used as the heterogeneous photocatalyst. The HABDD, as a self-standing diamond electrode, was designed and custom-made by MWCVD technology. The microstructures and crystalline of the TiO2 nanotubes and HABDD were characterized by a scanning electronic micrograph (SEM) and X-ray diffraction (XRD). Unlike other ozone generation methods, direct generation of ozone in the flowing water was applied in the photocatalysis process, and its effect was discussed. The diclofenac removal performance of the electrochemical-photocatalytic system was studied depending on O-3 generation efficiency, flowing rate, and the initial diclofenac concentration. The enhanced degradation effect from O-3 molecules on TiO2 photocatalysis was attributed to the larger active surface area, the increased photo-generated charge separation rate, and the contact area of O-3. The degradation efficiency in the combined electrochemical-photocatalytic TiO2/O-3/UV system was higher than that of the O-3/UV and TiO2/UV routes individually. Furthermore, a theoretical calculation was used to analyze the TiO2/O-3 interface in aqueous media in terms of the final energy. This system created an almost in situ feeding channel of oxidants in the TiO2 photocatalysis process, thus increasing photocatalytic efficiency. This synergetic system is promising in the treatment of pharmaceuticals in water.
更多
查看译文
关键词
TiO2 nanotubes, ozone, photocatalysis, diclofenac degradation, boron-doped diamond
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要