谷歌浏览器插件
订阅小程序
在清言上使用

A Facile Strategy to Prepare FeNx Decorated PtFe Intermetallic with Excellent Acidic Oxygen Reduction Reaction Activity and Stability

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2023)

引用 2|浏览8
暂无评分
摘要
The construction of low-Pt-content intermetallic on carbon supports has been verified as a promising method to promote the activity of the oxygen reduction reaction (ORR). In this study, we have developed a simple and effective strategy to obtain a well-designed CNT-PtFe-PPy precursor. This precursor contains modulated Pt- and Fe-based content dispersed in polypyrrole (PPy) chain segments, which are in-situ generated on the templates of carbon nanotubes (CNTs). Subsequent pyrolysis of the CNT-PtFe-PPy precursor produces a CNT-PtFe@FeNC catalyst, which contains both Fe-Nx and PtFe intermetallic active sites. Due to the highly efficient dispersion of active species, the CNT-PtFe@FeNC electrocatalyst displays a 9.5 times higher specific activity (SA) and 8.5 times higher mass activity (MA) than those of a commercial Pt/C catalyst in a 0.1 M HClO4 solution. Additionally, these results, combined with excellent durability (the SA and MA maintained 94 % and 91 % of initial activity after a 10-k cycle accelerated durability test), represent among the best performance achieved so far for Pt-based ORR electrocatalysts. Furthermore, density functional theory (DFT) calculations revealed that the presence of Fe-N4 species reduces the adsorption energy between the PtFe intermetallic compound and OH*, accelerating the ORR process.
更多
查看译文
关键词
Oxygen reduction reaction,FeNx structure,PtFe intermetallic compounds,Polypyrrole
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要