Evaluation on the characteristics of gut microbiome in polycystic ovary syndrome rats induced by dihydrotestosterone or letrozole

Research Square (Research Square)(2020)

引用 0|浏览0
暂无评分
摘要
Abstract Background: Etiology of polycystic ovary syndrome (PCOS) is unclear. Recent reports indicated that gut microbiota regulates metabolism and plays a major role in the development of PCOS.Methods: We used dihydrotestosterone (DHT) or letrozole (LET) to induce PCOS model rat. At the end of the experiment, ovarian morphology, hormonal and metabolic status were investigated in all rats. The molecular ecology of the fecal gut microbiota was analyzed by 16S rDNA high-throughput sequencing.Result: Rats induced by letrozole exhibited endocrine and reproductive characteristics, such as hyperandrogenism, abnormal oestrus cycles or complete acyclic, polycystic ovaries, and obesity. DHT-induced rats were showed obesity, irregular oestrus cycles, polycystic ovaries, lower level of HDL-C and lower activity of SOD than controls. Our study found that DHT can reduce the microbial richness in rats. PCoA plots confirmed that DHT group was statistically significantly separated from C group and LET group. LEfSe analysis showed that the family of Bacteroidales_S24_7_group, and genus Peptococcus and Turicibacter may play vital roles in the health and function of control group. Genus of Bifidobacteriales and Vibro may play roles in the letrozole induced PCOS rats. And genus of Lachnospiraceae_NK4A136_group, Ruminococcus_1, Ruminiclostridium, Treponema_2, Anaerotruncus, Acetatifactor and Anaeroplasma may play vital roles in the intestine of DHT induced PCOS rats.Conclusion: DHT affected the composition and diversity of gut microbial community, and leads to the gut dysbiosis. Letrozole may benefit to the gut microbiome in some aspects, but it also may have a trend of inhibiting the expression of some anti-inflammatory genera in intestinal tract.
更多
查看译文
关键词
polycystic ovary syndrome rats,gut microbiome,polycystic ovary syndrome,dihydrotestosterone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要