An Efficient and Sustainable Approach to Prepare Carboxylated Cellulose Nanocrystals for Rubber Reinforcement Featuring Dual Crosslinking Networks

Research Square (Research Square)(2021)

引用 0|浏览3
暂无评分
摘要
Abstract The surface functionalization of CNCs and the construction of strong interfacial adhesion between CNCs and rubber matrix are effective way to achieve high performance rubber/CNCs nanocomposites. Herein, carboxylation of sulphated cellulose nanocrystals (CNC-OSO3H) was conducted in aqueous medium by using citric acid as modifier. Large amount of carboxyl groups was successfully grafted on the surface of CNC-OSO3H, which endows the carboxylated CNC-OSO3H (abbreviate as CNC-CA) with higher chemical reactivity and thermal stability. Subsequently, carboxylated styrene butadiene rubber (XSBR)/CNC-CA nanocomposites with dual crosslinking design were prepared by using polyethylene glycol diglycidyl ether (PEGDE) as the crosslinking agent and CNC-CA as the reinforcing fillers. FTIR investigation found that in the obtained nanocomposites, the carboxyl groups on CNC-CA and XSBR formed hydrogen bonds (physical crosslinking) with each other, and the carboxyl groups formed covalent bond with the epoxy group on PEGDE simultaneously. The coexistence of physical and chemical crosslinking improved the interface compatibility between CNC-CA and XSBR matrix, accelerated the homogenous dispersion of CNC-CA and realized the crosslinking of the matrix itself. As expected, XSBR/CNC-CA nanocomposites with dual crosslinking network showed remarkable enhancement in tensile strength (up to 500%), modulus (up to 151%), work of fracture (up to 348%). This work provides both a facile and green approach to obtain carboxylated CNCs and a convenient method for the preparation of high-performance rubber nanocomposites with multiple interactions.
更多
查看译文
关键词
cellulose nanocrystals,rubber reinforcement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要