谷歌浏览器插件
订阅小程序
在清言上使用

Critical-Sized Bone Defect Regeneration: A Novel Scaffold Made by Electrospinning of Metformin-Incorporated Gelatin/Hydroxyapatite Nano-Fibers

crossref(2021)

引用 0|浏览3
暂无评分
摘要
Tissue engineering and regenerative medicine has gradually evolved as a promising therapeutic strategy to the modern healthcare of the aging and diseased population. In this study, we developed a novel nano-fibrous scaffold and verified its application in the critical bone defect regeneration. The metformin-incorporated nano-gelatin/hydroxyapatite fibers (NGF) was produced by electrospinning, cross-linked, and then characterized by XRD and FTIR. Cytotoxicity, cells adhesion, cell differentiation, and quantitative osteogenic gene and protein expression were analyzed by bone marrow stem cells from rat. Rat forearm critical bone defect model was performed for the in vivo study. The nano-gelatin/hydroxyapatite fibers (NGF) were characterized by their porous structures with proper interconnectivity without significant cytotoxic effects; the adhesion of bone marrow stem cells on the nano-gelatin/hydroxyapatite fibers (NGF) could be enhanced. The osteogenic gene and protein expression were upregulated. Post implantation, the new regenerated bone in bone defect was well demonstrated in the NGF samples. We demonstrated that the metformin-incorporated nano-gelatin-hydroxyapatite fibers greatly improved healing potential on the critical sized bone defect. Although metformin-incorporated nano-gelatin/hydroxyapatite fibers had advantageous effectiveness during bone regeneration, further validation is required before it can be applied to clinical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要