Characterization of a major QTL and Genome-Wide Epistatic Interactions for the Transformation of Single Spikelet in Teosinte Ears into Paired Spikelets in Maize Ears During Maize Domestication

Research Square (Research Square)(2021)

引用 0|浏览2
暂无评分
摘要
Abstract Maize ear carries paired spikelets, whereas the ear of its wild ancestor, teosinte, bears single spikelets. However, little is known about the genetic basis of the processes of transformation of single spikelets in teosinte ear to paired spikelets in maize ear. In this study, a two-ranked, paired-spikelets primitive maize and a two-ranked, single-spikelet teosinte were utilized to develop an F2 population, and QTL mapping for single vs. paired spikelets (PEDS) was performed. Two QTL (qPEDS1.1 and qPEDS3.1) for PEDS located on chromosomes 1L and 3S were identified in the 162 F2 plants using the inclusive composite interval mapping of additive (ICIM-ADD) module, explaining 1.93% and 23.79% of the phenotypic variance, respectively. Out of the 409 F2 plants, 43 plants with PEDS = 0% and 43 plants with PEDS > 20% were selected for selective genotyping; the QTL (qPEDS3.1) accounting for 64.01% of the phenotypic variance for PEDS was also detected. Moreover, the QTL (qPEDS3.1) was validated in three environments, which explained 31.05%, 38.94% and 23.16% of the phenotypic variance, respectively. In addition, 50 epistatic QTLs were detected in 162 F2 plants using the two-locus epistatic QTL (ICIM-EPI) module; they were distributed on all 10 chromosomes and explained 94.40% of the total phenotypic variance. The results contribute to a better understanding of the genetic basis of domestication of paired spikelets and provide a genetic resource for future map-based cloning; in addition, the systematic dissection of epistatic interactions underlies a theoretical framework for overcoming epistatic effects on QTL fine mapping.
更多
查看译文
关键词
maize ears,teosinte ears,spikelets,genome-wide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要