Estimating global land system impacts of timber plantations using MAgPIE 4.3.2

crossref(2021)

引用 0|浏览0
暂无评分
摘要
Abstract. Out of 1150 Mha of forests designated primarily for production purposes in 2020, plantations account for 11 % (131 Mha) of area and fulfilled more than 33 % of the global industrial roundwood demand. Yet, adding additional timber plantations to meet increasing timber demand increases competition for scarce land resources between different land-uses for food, feed, livestock and timber production. Despite their significance in roundwood production, the importance of timber plantations in meeting the long-term timber demand and the implications of plantation expansion for overall land-use dynamics have not been studied in detail so far, in particular not the competition for land between agriculture and forestry in existing land-use models. This paper describes the extension of the modular, open-source land-system Model of Agricultural Production and its Impact on the Environment (MAgPIE) by a detailed representation of forest land, timber production and timber demand dynamics. These extensions allow for understanding the land-use dynamics (including competition for land) and associated land-use change emissions of timber production. We show that the spatial cropland patterns differ when timber production is accounted for, indicating that timber plantations compete with cropland for the same scarce land resources. When plantations are established on cropland, it causes cropland expansion and deforestation elsewhere. As a result of increasing timber demand, we show an increase in plantations area by 140 % until the end of the century (+132 Mha in 1995–2100). We also observe in our model results that the increasing demand for timber increases scarcity of land, and causes intensification through yield increasing technological change by 117 % in croplands by 2100 relative to 1995. Through the inclusion of new forest plantation and natural forest dynamics, our estimates of land-related CO2 emissions match better with observed data in particular the gross land-use change emissions and carbon uptake (via regrowth), reflecting higher deforestation for expansion of managed land and timber production, and higher regrowth in natural forests as well as plantations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要