Recent retreat of Greenland's marine terminating glaciers has a lasting impact on velocity and mass loss during the 21st Century

crossref(2021)

引用 0|浏览0
暂无评分
摘要
<p>Mass loss from the Greenland Ice Sheet (GrIS) can be partitioned between surface mass balance (SMB) and discharge due to ice dynamics through its marine-terminating outlet glaciers. A perturbation to a glacier terminus (e.g. a calving event) results in an instantaneous response in velocity and mass loss, but also a diffusive response due to the evolution of ice thickness over time. This diffusive response means the total impact of a retreat event can take decades to be fully realised. Here we model the committed response of the GrIS to recent observed changes in terminus position, neglecting any future climate perturbations. Our simulations quantify the sea level contribution that is locked in due to the slow dynamic response of the ice. Using the Ice Sheet System Model (ISSM), we run forward simulations starting from an initial state representative of the 2007 ice sheet. We apply perturbations to the marine-terminating glacier termini that represent recent observed changes, and simulate the response over the 21<sup>st</sup> Century, holding the climate forcing constant. The sensitivity of the ice sheet response to model parameter uncertainty is explored with in an ensemble framework, and GRACE data is used to constrain the results. We find that terminus retreat observed between 2007 and 2015 results in approximately 6 mm of sea level rise by 2100, with retreat having a lasting impact on velocity and mass loss. Our results complement the ISMIP6 projections, which report the ice sheet response to future forcing, excluding the background committed response. In this way, we can obtain estimates of Greenland&#8217;s total contribution to sea level rise by 2100.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要