Bloom Story: reconstructing historical cyanobacterial communities in six contrasting New Zealand lakes

crossref(2021)

引用 0|浏览3
暂无评分
摘要
<p>Anthropogenic nutrient enrichment, hydrological modifications, and introduced species are contributing to an increase in the frequency and intensity of cyanobacterial blooms. This study aimed to document the evolution of cyanobacterial assemblages over time and explore the drivers of cyanobacterial blooms. Environmental DNA was extracted from sediment cores dating back approximately 1,000-years collected from six New Zealand lakes (Rotoehu, Pounui, Wairarapa, Paringa, Johnson, Hayes). Samples were analysed using cyanobacterial 16S rRNA metabarcoding and droplet digital PCR. Picocyanobacteria had the highest relative abundance. Marked shifts in species composition were observed over time but species varied between lakes. Marked shifts in total abundance (from ddPCR data) were observed through time in all lakes, and the metabarcoding data revealed these abundances to be bloom-forming taxa only in impacted lakes. Historical cyanobacterial communities seemed to be mostly influenced by anthropogenic activities and the geographic location of the lakes. Comparison with other paleolimnological proxies suggests land-use and non-native fish as key drivers in species and abundance shifts. Sedimentary environmental DNA analysis can complement traditional paleo-approaches, and provide novel information on microbial communities, and new insights into causes and consequences of cyanobacterial blooms.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要