Scientific workflow scheduling based on data transformation graph for remote sensing application

crossref(2021)

引用 0|浏览0
暂无评分
摘要
<p><strong>Abstract: </strong>As the amount of data and computation of scientific workflow applications continue to grow, distributed and heterogeneous computing infrastructures such as inter-cloud environments provide this type of application with a great number of computing resources to meet corresponding needs. In the inter-cloud environment, how to effectively map tasks to cloud service providers to meet QoS(quality of service) constraints based on user requirements has become an important research direction. Remote sensing applications need to process terabytes of data each time, however frequent and huge data transmission across the cloud will bring huge performance bottlenecks for execution, and seriously affect the result of QoS constraints such as makespan and cost. Using a data transformation graph(DTG) to study the data transfer process of global drought detection application, the specific optimization strategy is obtained based on the characteristics of application and environment, and according to this, one inter-cloud workflow scheduling method based on genetic algorithm is proposed, under the condition of satisfying the user&#8217;s QoS constraints, the makespan the cost can be minimized. The experimental results show that compared with the standard genetic algorithm, random algorithm, random algorithm, and round-robin algorithm, the optimized genetic algorithm can greatly improve the scheduling performance of data computation-intensive scientific workflows such as remote sensing applications and reduce the impact of performance bottlenecks.</p><p><strong>Keywords: </strong>scientific workflow scheduling; inter-cloud environment; remote sensing application; data transformation graph;</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要