NO Synthase but not NO, HNO or H2O2 Mediates Endothelium-Dependent Relaxation of Resistance Arteries from Patients with Resistant Cardiovascular Disease

crossref(2021)

引用 0|浏览3
暂无评分
摘要
Background and Purpose: Superoxide anions can reduce the bioavailability and actions of endothelium-derived NO. In human resistance-sized arteries, endothelium-dependent vasodilatation can be mediated by H2O2 instead of NO. We tested the hypotheses that in resistance arteries from patients with resistant cardiovascular disease (CVD), endothelium-dependent vasodilatation uses mechanisms that are either insensitive to oxidative stress or involve a reactive oxygen species. Experimental Approach: Small arteries were isolated from biopsies of the parietal pericardium of patients undergoing elective cardiothoracic surgery and were studied by immunohistochemical and organ chamber techniques. Key Results: NO-synthases 1, 2 and 3, superoxide dismutase 1 and catalase proteins were observed in the microvascular wall. Relaxing responses to bradykinin were endothelium dependent. During submaximal depolarization-induced contraction, these relaxations were inhibited by inhibitors of NO-synthases (NOS) and soluble guanylyl cyclase (sGC) but not by scavengers of NO or HNO, inhibitors of cyclooxygenases, neuronal NO-synthase, superoxide dismutase or catalase, or by exogenous catalase. During contraction stimulated by endothelin-1, these relaxations were not reduced by any of these interventions except DETCA which caused a small reduction. Conclusion and Implications: In resistance arteries from patients with resistant CVD, endothelium-dependent relaxations seem not to be mediated by NO, HNO or H2O2 although NOS and sGC can be involved. These vasodilator responses proceed during excessive oxidative stress.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要