SUMOylome Modulates Intraflagellar Transport Machinery and Eukaryotic Cilia Motility

Research Square (Research Square)(2021)

引用 0|浏览0
暂无评分
摘要
Abstract Translocation of channelrhodopsins (ChRs) is mediated by intraflagellar transport (IFT) machinery. However, the functional role of the network containing photoreceptors, IFT and other proteins in controlling cilia motility of the alga is still not fully delineated. In the current study, we identified two important motifs at the C-terminus of ChR1. One of them is similar to a known ciliary targeting sequence that specifically interacts with a small GTPase, and the other is a SUMOylation site. For the first time, experimental data provide an insight into the role of SUMOylation in the modulation of IFT & ChR1. Blocking of SUMOylation affected the phototaxis of C. reinhardtii cells. This implies SUMOylation based regulation of protein network controlling photomotility. The conservation of SUMOylation site pattern as analyzed for the relevant photoreceptors, IFT and its associated signaling proteins in other ciliated green algae suggested SUMOylation based photobehavioural response across the microbes. This report establishes a link between evolutionary conserved SUMOylation and ciliary machinery for the maintenance and functioning of cilia across the eukaryotes. Our enriched SUMOylome of C. reinhardtii comprehends the proteins related to ciliary development and, photo-signaling, along with homologue(s) associated to human ciliopathies as SUMO targets.
更多
查看译文
关键词
eukaryotic cilia motility,transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要